The use of Euler's formula in (3, 1)*-list-coloring

نویسندگان

  • Wenjie He
  • Yufa Shen
  • Yongqiang Zhao
چکیده

A graph G is called (k, d)∗-choosable if, for every list assignment L satisfying |L(v)| = k for all v ∈ V (G), there is an L-coloring of G such that each vertex of G has at most d neighbors colored with the same color as itself. Ko-Wei Lih et al. used the way of discharging to prove that every planar graph without 4-cycles and i-cycles for some i ∈ {5, 6, 7} is (3, 1)∗-choosable. In this paper, we show that if G is 2connected, we may just use Euler’s formula and the graph’s structural properties to prove these results. Furthermore, for 2-connected planar graph G, we use the same way to prove that, if G has no 4-cycles, and the number of 5-cycles contained in G is at most 11+bi≥5 5i−24 4 |Vi|c, then G is (3, 1)∗-choosable; if G has no 5-cycles, and any planar embedding of G does not contain any adjacent 3-faces and adjacent 4-faces, then G is (3, 1)∗-choosable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

List coloring the square of sparse graphs with large degree

We consider the problem of coloring the squares of graphs of bounded maximum average degree, that is, the problem of coloring the vertices while ensuring that two vertices that are adjacent or have a common neighbour receive different colors. Borodin et al. proved in 2004 and 2008 that the squares of planar graphs of girth at least seven and sufficiently large maximum degree ∆ are list (∆ + 1)-...

متن کامل

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

Euler's Formula via Potential Functions

A new proof of Euler's formula for polytopes is presented via an approach using potential functions. In particular, a connection between Euler's formula and the Morse relation from differential topology is established.

متن کامل

Sum List Coloring 2*n Arrays

A graph is f -choosable if for every collection of lists with list sizes specified by f there is a proper coloring using colors from the lists. The sum choice number is the minimum over all choosable functions f of the sum of the sizes in f . We show that the sum choice number of a 2 × n array (equivalent to list edge coloring K2,n and to list vertex coloring the cartesian product K22Kn) is n2 ...

متن کامل

Choosability, Edge Choosability, and Total Choosability of Outerplane Graphs

Let χl (G), χ ′ l (G), χ ′′ l (G), and 1(G) denote, respectively, the list chromatic number, the list chromatic index, the list total chromatic number, and the maximum degree of a non-trivial connected outerplane graph G. We prove the following results. (1) 2 ≤ χl (G) ≤ 3 and χl (G) = 2 if and only if G is bipartite with at most one cycle. (2) 1(G) ≤ χ ′ l (G) ≤ 1(G) + 1 and χ ′ l (G) = 1(G) + ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2006